Přejít k obsahu

Publikační činnost

Přehled publikační činnosti je uveden ve výročních zprávách na úřední desce FAV.

Níže je k dispozici on-line výpis z databáze publikační činnosti v jednotlivých letech (Pozn. vzhledem k většímu počtu publikačních výsledků může trvat zobrazení výpisu déle).



Unifying pricing formula for several stochastic volatility models with jumps

Citace:
BAUSTIAN, F., MRÁZEK, M., POSPÍŠIL, J., SOBOTKA, T. Unifying pricing formula for several stochastic volatility models with jumps. Applied Stochastic Models in Business and Industry, 2017, roč. 33, č. 4, s. 422-442. ISSN: 1526-4025
Druh: ČLÁNEK
Jazyk publikace: eng
Anglický název: Unifying pricing formula for several stochastic volatility models with jumps
Rok vydání: 2017
Autoři: Falko Baustian , RNDr. Milan Mrázek , Ing. Jan Pospíšil Ph.D. , Mgr. Tomáš Sobotka M.Sc. ,
Abstrakt EN: In this paper, we introduce a unifying approach to option pricing under continuous-time stochastic volatility models with jumps. For European style options, a new semi-closed pricing formula is derived using the generalized complex Fourier transform of the corresponding partial integro-differential equation. This approach is successfully applied to models with different volatility diffusion and jump processes. We also discuss how to price options with different payoff functions in a similar way. In particular, we focus on a log-normal and a log-uniform jump diffusion stochastic volatility model, originally introduced by Bates and Yani and Hanson respectively. The comparison of existing and newly proposed option pricing formulas with respect to time-efficiency and precision is discussed. We also derive a representation of an option price under a new approximative fractional jump diffusion model that differs from the aforementioned models, especially for the out-of-the money contracts.
Klíčová slova

Zpět

Patička